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Abstract-The association rule mining has been very useful 
in many applications such as, market analysis, web data 
analysis, decision making, knowing customer trends etc. In 
transactional databases as time advances, new transactions 
are being added and obsolete transactions are discarded. 
Incremental mining deals with generating association rules 
based on available knowledge (obtained from mining of 
previously stored databases) and incremented databases 
only, without scanning the previously mined databases 
again. Several research works have been carried out for 
deriving the association rules and maintaining them 
efficiently without re-scanning the complete database. In 
this paper, a survey on different algorithms designed for 
incremental mining is presented. The algorithms are 
discussed into two sub-categories namely, apriori based 
algorithms and tree based algorithms. The pros and cons 
of these algorithms are also discussed in brief. 
 

1. INTRODUCTION 
Due to the increasing use of large data with high 
computation required for various applications, the 
importance of data mining has grown rapidly. From the 
point of view of business application, analysis of 
previous transaction data can provide valuable 
information on behavior of customer, and thus help in 
making business decisions. Thus it is necessary to 
collect and analyze a sufficient data properly before 
making any decisions. Since the amount of data being 

processed is large, it is important for the mining 
algorithms to be very computationally efficient. Various 
data mining algorithms have been explored in the 
literature [1–6]. Recently many important applications 
have created the need of incremental mining. This is due 
to the increasing use of the record-based databases 
where data is being continuously added e.g., super 
market data, stock market data, sales data, and 
weather/traffic records, etc. In the incremental mining, 
data are not only added but also obsolete data are being 
deleted. The aim of incremental mining techniques is to 
re-run the mining algorithm on the only updated 
database. The overall process of incremental mining is 
summarized in Fig. 1. However, it is obviously less 
efficient since previous mining rules are not utilized for 
discovering new rules while the updated portion is 
usually small compared to the whole dataset. 
Consequently, the efficiency and the effectiveness of 
algorithms for incremental mining are both crucial 
issues. Algorithms should be such that only updated 
transactions and previous mined rules to be taken into 
account for generating new rules. In the next section 
various algorithms designed for incremental mining 
have been discussed. The most of algorithms have been 
classified into majorly two categories: Apriori based 
algorithms, and Tree based algorithms 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
‘ 

Fig 1: Process of incremental mining[19] 
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2. APRIORI-BASED INCREMENTAL MINING 

ALGORITHMS 
 

2.1 FUP Algorithm and Its Variations 
Algorithm FUP (Fast UPdate) [7] is the first algorithm 
proposed for incremental mining of association rules. It 
deals with databases with transaction insertion only, but 
is not able to solve the same with transaction deletion. 
Specifically, given the original database D and its 
corresponding frequent itemsets L = {L1, ..., Lk}. the 
algorithm reuses the information to efficiently obtain 
the new frequent itemsets L’ = {L’i, ..., L’k} on the new 

database D’ = D ∪ D+. Here, D is the original database, 

∆+ are the transactions added, ∆– are transactions 
deleted, D– is set of transactions left after deletion and 
D’ is incremented database. By utilizing the definition 
of support and the constraint of minimum support Smin. 
The following lemmas are generally used in algorithm 
FUP. 

1. An original frequent itemset X, i.e., X ∈ L, becomes 

infrequent in D’ if and only if X.supportD’ < Smin. 

2. An original infrequent itemset X, i.e., X /∈ L, may 

become frequent in D0 only if X.support∆+ ≥ Smin. 
3. If a k-itemset X whose (k-1)-subset(s) becomes 

infrequent, i.e., the subset is in Lk−1 but not in 
L’k−1, X must be infrequent in D’. 

 
FUP can update the association rules in a database when 
new transactions are added to the database, contains a 
number of iterations [13, 14]. The candidate sets at each 
iterations are generated based on the frequent itemsets 
found in the previous iteration. At the k-th iteration of 
FUP, ∆+ is scanned exactly once. For the original 
frequent itemsets, they only have to be checked against 
the small increment ∆+. To discover the new frequent 
itemsets, the set of candidate itemsets Ck is firstly 
extracted from D+, and then be pruned according to the 
support count of each candidate itemset in ∆+. 
Moreover, the pool for candidate itemsets can be further 
reduced by discarding itemsets whose (k–1)-subsets are 
becoming infrequent. 
Cheung, et. al. [8] proposed a new algorithm FUP2 

which is an extension of FUP algorithm. The FUP 
updates the association rules in a database when new 
transactions are added to the database whereas FUP2 
updates the existing association rules when transactions 
are added to and deleted from the database. FUP2 is 
similar to FUP for the case of insertion, and is, however, 
a complementary algorithm of FUP for the case of 
deletion. A very feature is that the old frequent k 
itemsets Lk from the previous mining result is used for 
dividing the candidate set Ck into two parts: Pk = Ck ∩Lk 
and Qk = Ck − Pk. In other words, Pk and Qk are the sets 
of candidate itemsets that are previously frequent and 

infrequent with respect to D. For the candidate itemsets 
in Qk, their supports are unknown since they were 
infrequent in the original database D, posing some 
difficulties in generating new frequent itemsets. It is 
noted that if a candidate itemset in Qk is frequent in Δ–, 
it must be infrequent in D–. This itemset is further 
identified to be infrequent in the updated database D’ if 
it is also infrequent in Δ+. This technique helps on 
effectively reducing the number of candidate itemsets to 
be further checked against the unchanged portion D– 
which is usually much larger than Δ– or Δ+. 
 
2.2 UWEP (Update With Early Pruning) 
In [9], algorithm UWEP has been proposed which uses 
the technique of update with early pruning. The 
advantage of algorithm UWEP over other FUP-based 
algorithms is that it prunes the supersets of an originally 
frequent itemset in D as soon as it becomes infrequent 
in the updated database D’, rather than waiting until the 
k-th iteration. In addition, only itemsets which are 

frequent in both Δ+ and D’= (D ∪ Δ+) are taken to 

generate candidate itemsets to be further checked 
against Δ+. If a k-itemset is frequent in Δ+, but 
infrequent in D’, it is not considered when generating 
Ck+1. This significantly reduces the number of candidate 
itemsets in Δ+. Consequently, these early pruning 
techniques can enhance the efficiency of FUP-based 
algorithms.  
 
2.3 Algorithm Utilizing Negative Borders 
The concept of negative borders [10] has been utilized 
in [11] to improve the efficiency of FUP-based 
algorithms on incremental mining. Given a collection of 
frequent itemsets L, the negative border Bd−(L) of L 

consists of the minimal itemsets X ⊆ R not in L where R 

is the set of all items. In other words, the negative 
border consists of all itemsets that were candidates of 
the level-wise method which did not have enough 
support. That is, Bd−(Lk) = Ck – Lk where Bd−(Lk) is the 
set of k-itemsets in Bd−(L). The intuition behind the 
concept is that given a collection of frequent itemsets, 
the negative border contains the "closest" itemsets that 
could be frequent, too.  
The algorithm proposed in [11] first generate the 
frequent itemsets of the increment portion Δ+. A full 
scan of the whole dataset is required only if an itemset 
outside the negative border gets added to the frequent 
itemsets or its negative border. Even in such cases, it 
requires only one scan over the whole dataset. The 
drawback is that to compute the negative border closure 
may increase the size of the candidate set. However, a 
majority of those itemsets would have been present in 
the original negative border or frequent itemset. Only 
those itemsets which were not covered by the negative 
border need to be checked against the whole dataset. As 
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a result, the size of the candidate set in the final scan 
could be much smaller as compared to algorithm FUP. 
 
2.4 MAAP (Maintaining Association rules with 

Apriori Property) and PELICAN 
Several other algorithms, including the MAAP 
algorithm [12], and the PELICAN algorithm [13], are 
proposed to  perform incremental mining. Algorithm 
MAAP firstly finds the frequent itemset(s) of the largest 
size based on previously discovered frequent itemsets. If 
a k-itemset is found to be frequent, then all of its subsets 
are also frequent and are thus added to the new set of 
frequent itemsets L’. This eliminates the need to 
compute some frequent itemsets of shorter sizes. The 
other frequent itemsets are then identified by following 
the levelwise itemset generation. Both algorithms 
MAAP and PELICAN are similar to algorithm FUP2, 
however, their main goal is to maintain maximum 
frequent itemsets when the database is updated. The 
algorithms do not consider non-maximum frequent 
itemsets, and therefore, the counts of non-maximum 
frequent itemsets cannot be calculated. The difference 
of these two algorithms is that MAAP calculates 
maximum frequent itemsets by Apriori-based 
framework, while PELICAN calculates maximum 
frequent itemsets based on vertical database format and 
lattice decomposition. Since these two algorithms 
maintain maximum frequent itemsets only, the storage 
space and the processing time for performing each 
update can be thus reduced. 
 

3. TREE-BASED INCREMENTAL MINING 

ALGORITHMS 
 

3.1 DB-tree and PotFp-tree Algorithms  
In [14], DB-tree and PotFp-tree have been proposed in 
order to achieve incremental mining. The algorithm DB-
tree, stores all the items in an FP-tree rather than only 
frequent 1-itemsets in the database. Besides, the 
construction of a DB-tree is exactly the same way as 
that of a FP-tree. Consequently, the DB-tree can be seen 
as an FP-tree with minimum support = 0. When new 
transactions are added, corresponding branches of the 
DB-tree could be adjusted or new branches may be 
created. On the other hand, when old transactions are 
deleted, corresponding branches are also adjusted or 
removed. This retains the flexibility to accommodate the 
FP-tree to database changes when performing 
incremental mining. However, since the whole dataset 
being considered could be quite large, a much more 
space could be needed to maintain this DB-tree structure 
even a high compression is made by the nature of tree 
projection. This drawback may cause the problem of 
insufficient memory even more severe when the size of 
the DB-tree is far above the memory capacity. The other 

algorithm proposed in [14] is the PotFp-tree, which 
stores only some potentially frequent items in addition 
to the frequent 1-itemsets at present. A tolerance 
parameter t is used to decide if an item is potentially 
frequent. Therefore, the need to scan the whole old 
database in order to update the FPtree when updates 
occur is likely to be effectively reduced. The PotFp-tree 
is seeking for the balance of required extra storage and 
possibility of re-scanning the dataset. Since FP-tree is a 
subset of either the DB-tree or the PotFptree, for mining 
frequent itemsets, the FP-tree is firstly projected from 
either the DB-tree or the PotFp-tree. The frequent 
itemsets are then extracted from the FP-tree in the way 
described in [15].  
 
3.2 FELINE (Frequent /Large patterns mining with 
CATS tree) 
In [16], the CATS tree (compressed and arranged 
transaction sequences tree) has been proposed which 
has several common properties of FP-tree. Also, the 
CATS tree and the DB-tree are very alike since they 
both store all the items no matter they are frequent or 
not. This feature enables the CATS tree to be capable of 
avoiding re-scans of databases when updates occur. 
However, the construction of the CATS tree is different 
to that of an FP-tree and a DB-tree. Specifically, the FP-
tree is built based on the ordering of global supports of 
all frequent items, while the CATS-tree is built based on 
the ordering of local supports of items in its path. 
Consequently, the CATS-tree is sensitive to the ordering 
of input transactions, making the CATS-tree not optimal 
since no preliminary analysis is done before the tree 
construction. This in turns can reduce the data scan 
required to only once, which is the advantage of this 
algorithm. 
 
3.3 CAN Tree ( Canonical – order Tree) 
In [17] a novel tree structure, called CanTree 
(Canonical-order Tree) has been proposed which 
captures the content of the transaction database and 
orders tree nodes according to some canonical order. 
The construction of the CanTree only requires one 
database scan as compared to an FP-tree which requires 
two database scans. In CanTree, items are arranged 
according to some canonical order, which can be 
determined at runtime during the mining process. 
Specifically, items can be arranged in lexicographic 
order or, items can also be arranged according to some 
specific order depending on the item properties (e.g., 
price, validity, etc.) which are frequency independent 
ordering. Items can also be arranged according to some 
fixed frequency-related ordering (e.g., in descending 
order of the global frequency of the “original” database 
DB). Once the ordering is determined, items will follow 
this ordering in CanTrees for subsequently updated 
database even the frequency ordering of items in these 
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updated databases is different from DB. With this 
canonical ordering of items, some properties [17], are 
described below. 
Property 1) The ordering of items is unaffected by the 
changes in frequency caused by incremental 
updates.Property 2) The frequency of a node in the 
CanTree is at least as high as the sum of frequencies of 
its children.Now with these properties of CanTree, 
transactions can be easily added to the CanTree without 
searching for merge-able paths. As canonical order is 
fixed, any changes in frequency caused by incremental 
updates (e.g., insertions, deletions, and/or modifications 
of transactions) will not affect the ordering of items in 
the CanTree at all. Also, swapping of tree nodes which 
often leads to merging and splitting of tree nodes is not 
required. Once the CanTree is constructed, mining 
frequent patterns from the tree is similar to FP-growth. 
Since items are consistently arranged according to some 
canonical order, the inclusion of all frequent items using 
just upward traversals is guaranteed. There is no worry 
about possible omission or doubly-counting of items. 
Hence, for CanTrees, there is no need for having both 
upward and downward traversals which significantly 
reduces computation. 
 

4 DISCUSSIONS 
Mining of association rules can provide very valuable 
information, and improve the quality of business 
decisions. Many incremental mining algorithms have 
been proposed by different researchers in accordance 
with the need of applications which uses record based 
database and where database grows rapidly. The overall 
approach towards incremental mining is to make use of 
previously mined knowledge and scan only incremented 
database. Most of the algorithms try to reduce the 
number of scans of database and maintain the 
association rules efficiently. Apriori based algorithms 
like FUP and FUP2 requires two complete scans of 
database and are computationally less efficient due to 
candidacy generation. Tree based algorithms, like CAN 
tree and FELINE, require only single scan of database. 
The FELINE algorithm requires swapping, merging and 
splitting of tree nodes, since it uses frequency dependent 
ordering and this drawback has been overcome in CAN 
tree. FELINE also takes large computation time in 
finding merge-able paths and needs downward 
traversals during mining. In all, many algorithms have 
contributed to achieve incremental mining, however yet 
there are scopes to improve the efficiency of algorithms, 
development of new algorithms, and to reduce number 
of scans of databases.  
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